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Numerical evidence of regularized correlations in spin foam gravity
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We report on the numerical analysis of the area correlations in spin foam gravity on a single 4-
simplex considered by Rovelli in PRL 97 (2006) 151301. We compare the asymptotics and confirm
the inverse squared distance leading behaviour at large scales. This supports the recent advances on
testing the semiclassical limit of the theory. Furthermore, we show that the microscopic discreteness
of the theory dynamically suppresses and regularizes the correlations at the Planck scale.

A fundamental theory of quantum gravity is expected
to improve the UV behaviour of the non-renormalizable
perturbative quantization of General Relativity. The lat-
ter should nonetheless emerge in the low-energy limit,
where it can be considered as an effective field theory.
Among the key features to be reproduced is the dis-
tance dependence of the free graviton propagator encod-
ing Newton’s law. In Loop Quantum Gravity (LQG) and
its covariant version, the spin foam formalism [1], the UV
behaviour is expected to be cured by the discreteness of
spacetime at the Planck scale. While the regularizing ef-
fect of such discreteness is clear, it is rather non-trivial
how the discreteness smooths out to a low energy limit
given by the effective theory of gravitons. This is the
problem of the semiclassical limit in LQG and spin foams.
In this letter we give numerical evidence that a behaviour
consistent with the graviton theory at low energies is dy-
namically suppressed and regularized at the Planck scale.

The study of the semiclassical limit has received a great
deal of attention over the last few years and important re-
sults have been obtained [2]. In particular, in [3, 4, 5, 6, 7]
a program was started to compute the graviton propaga-
tor using correlations between geometric quantities. An-
alytic results show that the leading order at large scales
is consistent with that of the free propagator from the
linearized quantum theory, thus providing an important
piece of evidence for the correctness of the limit. Here
we confirm this result numerically, supporting the ap-
proximations made to deal with the complexity of the
calculations. Furthermore, the numerical approach also
allows us to study the small scale structure of the prop-
agator, where the non-perturbative effects of spin foams
are dominant, and we show that the discrete structure
does regularize the typically divergent behaviour of the
correlations, suppressing them at the Planck scale. Fi-
nally, we point out the limitations of the model used, and
discuss the relevant developments to be made.

We consider the area correlations for 4d Riemannian
quantum gravity defined and studied in [4]. These are
correlations between fluctuations of the areas around
a given background q of a 4-simplex, and corre-
spond to some components of the graviton propagator
Gµνρσ(x, y) = 〈0|hµν(x)hρσ(y)|0〉. For extensive motiva-
tion and discussion, see [5]. We index the ten triangles of
the 4-simplex by l, and the area eigenvalues are given by

Al = ℓ2
P(2jl + 1), with jl half-integers. For simplicity, we

choose the background to be a regular four-simplex, with
all ten areas having the same value, A0 = ℓ2

P(2j0 + 1).
Given two triangles a and b, we consider the following
area correlation,

Wab(j0) =
1

N

∑

jl

h(ja)h(jb)Ψq[jl] K[jl], (1)

where N =
∑

jl
Ψq[jl] K[jl] is the normalisation, Ψq is

the boundary state and K the propagation kernel, or
path integral amplitude. These are model-dependent
quantities, and we describe our choices below. The quan-
tity h(ja) ≡

(

A2
a − A2

0

)

/A2
0 represents an area fluctua-

tion, or equivalently, the fluctuation of the metric ten-
sor hµν projected along the normal nµ

a to the triangle.
Wab(j0) is the spin foam discrete analogue of the pro-
jections Gab = nµ

anν
anρ

bn
σ
b Gµνρσ(a, b) of the continuum

graviton propagator around a flat background, with the
two points taken to be the centers of the triangles. If the
theory has the right semiclassical limit, the leading or-
der of (1) should match the leading order of Gab, namely
the free propagator corresponding to the linearized the-
ory, which we recall scales as the inverse squared distance
between a and b.

The boundary state Ψq[jl] represents a dynamical co-
herent state peaked around both the (canonically con-
jugate) intrinsic and extrinsic 3-geometry of the classi-
cal background q chosen. Given the discrete 4-simplex
considered, this means choosing a background configu-
ration for the areas and their conjugate variables, the
dihedral angles. Taking the simple choice of the equi-
lateral configuration (j0, θ), all triangle areas are given
by A0 = ℓ2

P(2j0 + 1) and all inside dihedral angles by
θ = arccos(1

4
). The explicit form of such a state is not

known in the full theory, but control can be gained by go-
ing to lowest order in the perturbative expansion. Based
on analogies with the continuum linearized theory, in [4]
the following Gaussian ansatz was made,

Ψq[jl] = exp
{

−
1

2j0

∑

lm

αlm δjl δjm + iθ
∑

l

(2jl + 1)
}

,

(2)
where αlm is a 10 by 10 constant matrix and δjl = jl−j0.
The matrix αlm is non-diagonal, but the symmetries of
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the equilateral background reduce the number of inde-
pendent entries to three (see discussion below). Having
the squared width proportional to j0 guarantees that in
the large j0 limit the state (2) is peaked around both
conjugate variables of the background q = (j0, θ) (e.g.
[8]). The physical boundary state for the full theory is
expected to have a lowest order contribution, correspond-
ing to the free theory, given by (2) with a definite αlm.
So if we know the full state, we can fix αlm looking at
its perturbative expansion. In this context, the parame-
ter for the perturbative expansion can be taken to be j0:
as geometric areas are given by ℓ2

P j0, the limit j0 7→ ∞
drives the ℓP expansion. Therefore, the parameter j0 has
a double role: on the one hand, it describes the back-
ground geometry of the boundary; on the other hand, is
the parameter of the perturbative expansion.

The kernel depends on the spin foam model chosen.
As in [4], we consider the Barrett-Crane (BC) model [9],

K[jl] =
∏

l

(2jl + 1)k {10j}, (3)

where the integer k parametrizes the choice of face weight
in the measure, and the 10j-symbol {10j} is an SO(4)
invariant tensor constructed with Clebsch-Gordan coef-
ficients. To study its perturbative expansion, recall that
when all spins are homogeneously large, i.e. jl = Nkl,
N 7→ ∞, the 10j-symbol has a stationary phase contri-
bution of the form [10]

µ(jl) cos (SR[jl] + φ) , (4)

where µ(jl) is a non-oscillating function scaling like
N−9/2, SR[jl] =

∑

l(2jl + 1)θl(jl) is the Regge action for
a single 4-simplex with triangle areas Al = ℓ2

P(2jl +1) as
independent variables, and φ is an irrelevant phase. It
was shown in [11] (see also [12]) that this is masked by
a non-oscillating contribution D(jl) that scales like N−2.
This dominant contribution corresponds to a degenerate
geometry for the 4-simplex. However, as conjectured in
[4] and proved in [6], D(jl) is negligible in the evalua-
tion of quantities like (1), where its non-oscillating na-
ture fails to properly match the phase of the boundary
state (2). The work of this paper supports these analytic
calculations, and thus is the first (indirect) numerical ev-
idence of (4). Therefore the asymptotic behaviour of (3)
is effectively given by the kernel for Regge calculus with
measure

∏

l(2jl + 1)k µ(jl).
The emergence of Regge calculus in the semiclassi-

cal limit of LQG and spin foams has often been advo-
cated [13], and would provide a solid bridge to low-energy
physics: Regge calculus is a discrete representation of GR
known to reproduce the correct linearized quantum the-
ory [14], thus if in (1) we use Ψq and K from linearized
Regge calculus, we expect to obtain the right free gravi-
ton propagator. This suggests a possible strategy to fix
αlm by evaluating the boundary state in linearized Regge
calculus [15]. In general, the matrix αlm is non-diagonal,
and this makes evaluating (1) extremely challenging. To

simplify the numerical analysis we study the case where
αlm ≡ α δlm is diagonal. Indeed, using the formula for
the {10j}-symbol as an integral over SO(4), this choice
allows us to perform each sum over jl separately, which
simplifies the numerical task. The integral is then dealt
with using Monte Carlo methods. We will come back to
this point at the end, and discuss improvements in the
boundary state.

We then have a model with a single free parameter α,
determining the width of the Gaussian. For different val-
ues of α, we study the matrix (1) as a function of j0, in
particular to test its asymptotic behaviour and support
the analytic calculations which appeared in [4], which we
briefly recall here. First of all,

∏

l(2jl+1)k µ(jl) is a mea-
sure term in (1), thus it will affect only the higher order
corrections [7]. The leading order is obtained by approxi-
mating (1) with (the second moment of) a Gaussian inte-
gral, like in the continuum linearized theory, with action
Qlm δjl δjm given by the quadratic term in the boundary
state and the second derivatives of the Regge action,

Qlm =
α

j0
δlm + i

∂2SR

∂jl ∂jm

∣

∣

∣

∣

∣

j0

. (5)

The Hessian matrix of the Regge action on the equilat-
eral configuration was computed in [5], and it is a 10
by 10 matrix with a regular structure inherited from the
regularity of the equilateral 4-simplex. Fixing a triangle
a, there are only three distinguishable choices for b: the
case when b is the same triangle, the six cases when b
is an adjacent triangle sharing an edge with a, and the
three cases when b is an opposite triangle sharing only
a vertex with a. Correspondingly, for each row of the
Hessian there are only three different entries,

∂2SR

∂jl ∂jm
=

1

j0
Hlm, Hlm =

1

2

√

3

5
flm, (6)

where for each row flm = −9 occurs once, 7/2 six times,
and −4 three times. We can then write

Qlm =
1

j0
Alm, Alm ≡

(

α δlm + i Hlm

)

. (7)

Notice that Hlm is not invertible, just like the original
continuum term, due to diffeomorphism invariance [15].
On the other hand, Alm is invertible for any α > 0, thus
the boundary state effectively provides a gauge-fixing for
the propagator.

Following the same procedure as [4], we obtain for the
absolute value of the leading order

|WLO
ab (α)| =

4

j0
|A−1

ab|. (8)

If the theory has the right semiclassical limit, (8) should
give the free graviton propagator of linearized quantum
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gravity.1 Choosing the harmonic gauge, the latter is
given by

Gµνρσ(a, b) = −
1

2

δµρδνσ + δνρδµσ − δµνδρσ

d(a, b)2
. (9)

For the equilateral background we have chosen, there are
only three independent projections Gab, and furthermore
the squared distances are all proportional to j0. Both
features are matched by (8), which has only the three
independent entries discussed above and scales as 1/j0.

2

In general, |WLO(α)| scales as (αj0)
−1 for both α ≫ 1

and α ≪ 1. To have explicit values, we choose a and b to
be opposite triangles, and fix α = 0.5 and α = 5. From
(8) we obtain

|WLO
opp(0.5)| =

1.02

j0
, |WLO

opp(5)| =
0.13

j0
. (10)

In Fig. 1 we compare these analytic results with the nu-
merical analysis of the full formula (1), where in the ker-
nel (3) we choose the simple measure term with k = 0.
The dots are the numerical evaluations of the absolute
value of (1) for these cases, and the error bars are one
σ. Remarkably, good agreement is reached already at
j0 ∼ 50. This is our first result: we numerically tested
the inverse squared distance asymptotic behaviour of the
area correlation in spin foam gravity. This is crucial to
support the approximations used in [4] to deal with the
complexity of the calculation, in particular the conjecture
that the D term drops out.

Let us now focus on the short scale behaviour. We see
that the divergent behaviour of the graviton correlations
gets regularized at high energies by the discrete structure
of spin foams. This is how the full theory enhances the
effective field theory where the latter breaks down, and it
confirms the intuition that spacetime can not be consid-
ered as fluctuating around the flat metric at the Planck
scale. The peak is very close to the Planck scale, and
its exact location depends on the value of α, but also on
the measure term in (4). To show this, in Fig. 2 we plot
again the case α = 5, but this time with k = 1. Notice
that the position of the peak is slightly pushed to the
right, but the qualitative behaviour is the same.

We want to conclude with an outlook for further devel-
opments to turn this picture into a concrete prediction of
the theory. This will require enhancing both the bound-
ary state and the kernel used here.

1 We take the absolute value for a better comparison with the
linearized Gab, because the spin foam kernel (4) provides the
complex exponential of the Regge action even in Riemannian
signature. The phase of (8) is irrelevant for our work.

2 One of the three cases is the correlation of a triangle with itself.
While the continuum graviton propagator between the same two
points is divergent, this is not the case for Waa. This should
not be surprising, as it is among the regularizing effects of the
discrete microscopic structure.
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FIG. 1: Numerical study of (1) (dots), versus the analytic
result of the leading order, on a log-log plot. Top panel: the
case α = 0.5. Bottom panel: the case α = 5. Raw data and
more plots are available at http://jdc.math.uwo.ca/graviton

�� ��
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FIG. 2: The case k = 1, α = 5. The leading order is the same
as for k = 0, and the position of the peak shifted to the right.

The first improvement would be to remove the ambi-
guity in αlm by fixing it with a dynamical requirement.
To obtain a quantitative matching with the free gravi-
ton Gab we need the right boundary state, with the right
non-diagonal structure and values of the entries, coming
from the dynamics and a choice of gauge. As mentioned

http://jdc.math.uwo.ca/graviton
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above, a possible way to obtain this quantity is to evalu-
ate it in linearized area Regge calculus.

Furthermore, from analogies with conventional quan-
tum field theory we expect there to exist a procedure
for extracting the full boundary state from the non-
perturbative kernel. Extending this procedure in back-
ground independent quantum gravity (see for instance
[16]) would be extremely useful. The full state will fix
αlm by looking at the perturbative expansion, but also
contribute to the small scale structure, thus affecting the
numerical analysis presented here. This will certainly
modify numerical results such as the exact location of
the peak, but will most likely not change the qualitative
picture of suppressed correlations at the Planck scale.
This regularizing effect is very likely to survive in the full
theory, because it is a facet of the discrete microscopic
structure, more than of the details of the model.

On the other hand, the kernel itself needs improve-
ment. Indeed the BC kernel does not capture the dy-
namics of quantum gravity in a fully consistent way. Here
we used it in the restricted context of area correlations
on a single 4-simplex, where it provides a sensible quan-
tum gravity amplitude. To test the full tensorial struc-
ture of (9), we need to consider also projections that in
the discrete picture would correspond to correlations be-
tween the dihedral angles of the boundary geometry. As

pointed out in [5, 17], these correlations can not be stud-
ied using the BC vertex amplitude. Furthermore, the
calculations presented here need to be extended to many
4-simplices, and the large spin limit of BC (4) precisely
lacks the constraints which are needed to correctly treat
the areas as independent variables. These issues have re-
cently been addressed, and promising new models have
been proposed [18]. It would be extremely interesting to
apply the same analysis to these new models.

In conclusion, we have presented a spin foam model
where correlations consistent with the graviton theory at
low energies are dynamically suppressed and regularized
at the Planck scale. This work shows that the spin foam
framework for quantum gravity naturally provides the
expected regularization of the corrections at short scales,
i.e. high energies: the theory has a short length scale
appearing dynamically, which also suggests that space-
time can not be considered as fluctuating around the flat
metric at the Planck scale. We stress that the model pre-
sented here is not predictive, and further work is needed
before the correctness of the semiclassical limit of spin
foam gravity can be claimed. Our results give a glimpse
of what the qualitative picture of quantum gravity and its
bridging to low-energy physics could be like, and suggest
interesting new questions for further investigation.
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