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Abstract. We derive an explicit formula for the vertex amplitude of dual SU(2) Yang-Mills theory in four
dimensions on the lattice, and provide an efficient algorithm (of order j4) for its computation. This opens
the way for both numerical and analytical development of dual methods, previously limited to the case of
three dimensions.

1. Introduction

Since their inception in the early 1970’s, quantum field theories formulated on the lattice have been mapped
to dual theories — models mathematically equivalent to the original formulation, but with different degrees of
freedom. In many cases, configurations in the dual model can be interpreted as extended geometric structures
such as closed sheets or self-avoiding polymers living on the space-time lattice [1, 2, 3]; such structures can
in turn be interpreted as histories of the physical degrees of freedom of the theory [4]. Recently, the concept
of dual methods as an alternative framework for computations in lattice gauge theory has seen a renewal
of interest [5, 6]. Apart from the geometric insight provided by the dual theories and their use of gauge-
invariant physical degrees of freedom, dual methods may provide a source of novel algorithms with attractive
numerical performance in some regimes. From early work (e.g. [7]) it was found that abelian gauge theories
are particularly tractable in their dual form. The abelian case was initially a source of many dual results and
continues to provide a practical alternative to conventional numerical simulations [8, 9, 10, 11, 12]. With the
above motivations in mind, we turn to the dual model of SU(2) Yang-Mills theory on the four-dimensional
lattice. This case is an important proving ground for the viability of dual non-abelian method, and one that
has long been out of reach for practical calculations.

In analogy with dual abelian constructions, a dual formulation for pure non-abelian Yang-Mills lattice
gauge theory (LGT) in four dimensions can be constructed from the character expansion of a local lattice
action and has been known for decades (e.g. see [13] and references therein). However, the näıve application
of character expansion leads to a non-local expression for the amplitude — a group integral over the entire
lattice. It has since been realized by several authors that this group integral, which involves products of
characters, can be expanded into intertwiner labellings at lattice edges, such that the dual amplitude becomes
a product of amplitudes local in the plaquette and intertwiner labellings. Following the description of an
explicitly local amplitude in the case of D = 3 and G = SU(2) by Anishetty et al. in [14, 15, 16], Halliday
and Suranyi observed in [17] that a local amplitude in four and higher dimensions can in principle be defined.
However, a practical formula for the dual amplitude in D = 4 (analogous to that of [14, 15, 16]) has proven
more elusive.

Recently, a systematic approach to non-abelian dual theories that emphasizes the underlying represen-
tation-theoretic structure has been developed starting with work by Oeckl and Pfeiffer [18, 19]. These
developments make use of the diagrammatic formalism to establish explicit representation-theoretic formulae
for the local amplitudes that arise upon expanding in an intertwiner basis.

It was demonstrated in [20] that numerical computations could be carried out for the dual form of LGT
with G = SU(2) on a cubic three-dimensional (D = 3) lattice. One major hurdle to extending the algorithm
of [20] to D = 4 is the problem of finding a closed-form formula for the vertex amplitude that can be
evaluated efficiently on a computer and gives reasonable scaling with increasing spin labels.

In what follows, we present such an explicit and efficient evaluation of the vertex amplitude, a non-trivial
function of 48 spin labels that dominates the computational costs of evaluating the dual amplitude in four
dimensions. Our implementation of this formula has been validated for a range of special cases; currently,
full Monte Carlo simulations using this amplitude are under way and will be described in an upcoming paper.
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2. Explicit algorithm for the vertex amplitude

2.1. Review. The steps we shall use to find an explicit formula for the vertex amplitude are analogous to
those described in [20] for the case of D = 3. For a hypercubic lattice κ in four dimensions, we write the
integral of the six SU(2) matrices sharing a given edge variable ge as follows:
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where j1, . . . , j6 denote irreducible representations of SU(2), which we index by non-negative half-integers
0, 1

2 , 1, . . .. The RHS of (1) is a projection map from the space of all linear maps j6 ⊗ j5 ⊗ j4 → j1 ⊗ j2 ⊗ j3
onto the space of intertwiners (maps commuting with the action of G), and can thus be expanded using an
orthogonal basis of intertwiners Ii : j6 ⊗ j5 ⊗ j4 → j1 ⊗ j2 ⊗ j3 as follows:
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Carrying out the contractions results in a spin foam model (see, for example, [19, 20, 21] for details), with
the vertex amplitude defined as a spin network evaluation of the network shown in Figure 1. In drawing
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Figure 1. Vertex amplitude for hypercubic lattice in four dimensions.

this figure, we have placed the vertex labelled −t “at infinity”. The edges of this network carry the irrep
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labels ji from the associated plaquettes meeting at the vertex and the vertices carry the intertwiner labels
appearing in the expansion (2), associated to the edges incident to the vertex. The orientations of the edges
are determined from an orientation of the plaquettes in the lattice. We note in passing that this network
has 24 edges and 8 vertices, and shares the same graph structure as a “hyperoctahedron”.

To apply diagrammatic techniques leading to an explicit formula, our first task is to work with a diagram
possessing 3-valent vertices, for which recoupling rules from [22, 23] can be applied. A basis for the 6-valent
intertwiners appearing in (2) can be readily chosen in terms of 3-valent networks having six edges entering
or leaving (see Figure 2). Because three internal edges are required, the edges of the four-dimensional lattice
will carry three half-integer spin labels, subject to some constraints. (In contrast, for the 4-valent vertices
arising in D = 3, only a single label is required to define the intertwiner assigned to an edge.)

Returning to the spin network that defines the vertex amplitude, we see that because each network vertex
is associated with three spins, the vertex amplitude becomes a function of 48 spins in total; 24 from the
network edges (coming from lattice plaquettes) and 24 from the 8 network vertices (3 from each of the 8
lattice edges). Thus, we shall refer to a vertex amplitude (with its vertex splitting specified) as a 48j symbol.
It should be noted that different patterns of splittings over the edges of the lattice can be chosen leading to
numerically different vertex amplitudes1.

An important technical consideration is that the network resulting from an arbitrary splitting does not
necessarily have translation symmetry over all the lattice vertices, as the splitting along one direction may
not be related to the splitting in its opposite direction by a translation of the network. Indeed, this is the
case for the choice of splitting we will introduce below. However, a pattern of partial reflections leading to
24 = 16 “versions” of the 48j symbol can be repeated to fill a lattice2. As the sixteen versions are related
to each other by appropriate permutations of arguments, it is sufficient to work out a single case, which we
shall by convention define to be the 48j symbol at the origin3.

In what follows we present the explicit evaluation of the 48j symbol associated with a particular splitting
(choice of intertwiner basis) that we give in the next section.

2.2. Step 1 — A splitting. We now specify the splitting we shall use for our 6-valent intertwiners. First
we recall that a 3-valent intertwiner is uniquely determined up to a scale factor, and to fix conventions we
use the intertwiners defined in [22]. Figure 2 shows a 6-valent intertwiner I and its dual I∗. As the internal
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Figure 2. Our choice of 6-valent intertwiners: a “three-fold” splitting.

labels i1, i2 and i3 vary, the intertwiners I form an orthogonal basis of all 6-valent intertwiners, and these
are the splittings used in our recoupling of the vertex amplitude below. Observe here that the six incident
edges are grouped into three pairs; the choices we make are shown in Figure 3, in which each 6-valent vertex
has been replaced by an intertwiner I as in Figure 2. The central vertex of I is labelled with the same label
as the original 6-valent vertex had.

Before we can apply recoupling rules to explicitly compute the vertex amplitude spin network, we must
cast it into the form where the rules of [22, 23] can be applied. To do this we follow the procedure described
in Appendix A of [20], which relates the original spin network (with oriented edges) defining the 48j symbol

1Of course, for a given labelling of plaquettes, the sum over intertwiner labels of the product of edge and vertex amplitudes
over the lattice is independent of the choice of splitting.

2The lattice must have even side-lengths, which is not a serious constraint in practice.
3A similar phenomenon can arise in the three-dimensional case [24], although there it is sufficient to use two closely related

network evaluations; alternatively, a translation invariant splitting can be used [20].

3



��
��
��

��
��
��

�
�
�
�−y

−t

−t

−x

+y

+z

+x−t

+t

−z

��
��
��

��
��
��

Figure 3. A spin network diagram representing the 48j symbol in our choice of splitting.

to a spin network in the sense of [22, 23]; although the two are equal in magnitude, in general there is a sign
factor that depends on the spin arguments.

To determine the sign factor, we start by redrawing the network with all edges directed down the page,
except for some edges which wrap around the right to the top of the page and contribute a sign factor. In
doing this, the order of the edges incident on each vertex must be kept the same, but over-crossings and
under-crossings can be reversed. Such a mapping is presented in Figure 4. We first recall each line wrapping
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Figure 4. Redrawing of vertex amplitude to determine sign factor.

around contributes a sign factor of (−1)2i. We next observe that each intertwiner label that appears in the
overall sign factor (−1)2

P

i for a given vertex will also appear in the sign factor of the vertex on the other
side of the edge. Thus, globally these sign factors will cancel. Because of this, we are free to “drop the
orientation” of the original spin network and apply the rules of [22] and [23], as was done in [20].
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2.3. Step 2 — Collapse of triangles. Referring to the splitting we have indicated in Figure 3, we have
drawn the diagram so as to make clear eight triangles, the edges of which are labelled by spins coming from
plaquettes, and the vertices of which connect to edges carrying intertwiner labels. The next step in our
recoupling procedure is to collapse each of these by applying the identity

[

a b e

c d f

]

θ(a, d, e)

=

e

b c

a d
f

e

a d

,(3)

which introduces the Kauffman-Lins tet symbol (the square bracketed expression) and theta network 4.
After collapsing the triangles, the vertex amplitude Av is given by

(4) Av[j1, j2, . . . , j24, i1, i2, . . . , i24] = τ1τ2









8
∏

n=1

[

ia1(n) jb1(n) ie1(n)

jc1(n) id1(n) jf1(n)

]

θ(ia1(n), id1(n), ie1(n))









S0,

where S0 is the spin network depicted in Figure 5. In Figure 5 it should be noted that, relative to Figure 4,
two twists (indicated by bars spanning twisted strands) have been introduced, giving rise to associated sign
factors τ1 and τ2 (see Step 3 below for discussion). This was to put the diagram in a particular planar order
so that the identity (5) defined in the next section below can be applied unambiguously.

An interesting remark at this point is that the dependence on the 24 plaquette spins ji has been completely
absorbed into the product of collapse factors in (4); the remaining spin network is purely a function of the
24 intertwiner labels.
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Figure 5. Spin network evaluation after removing triangles. In Step 3, recoupling moves
are applied to solid lines.

4As discussed in [20], the tet network is closely related to the Racah-Wigner 6j symbol. Note that [23] uses integer spins
where we and [22] use half-integer spins.
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2.4. Step 3 — Transforming to a ladder. In this step we transform the spin network S0 into a ladder
via a sequence of eight recoupling moves of the form

∆m

[

a b m

c d R

]

θ(a, d, m)θ(b, c, m)

b c

d

m

a

=

d

c

a

b

R ,(5)

where ∆m = (−1)2m(2m + 1). The moves are indicated in Figure 5 as follows. The eight edges to be
recoupled are drawn as solid lines and labelled with letters from A through H . As given by (5), each of these
moves leads to an auxiliary sum over an additional irrep label mi. Upon applying the recoupling moves one
arrives at the spin network shown in Figure 6(a).

While these moves are sufficient to give a network having the topology of a ladder, there are a number of
vertices at which “twist moves” have to be performed to arrive at a ladder without crossings. These twists
do not effect the magnitude of the spin network evaluation but can introduce signs, as follows:

=

βα

γ γ

α β

��
��
��
��

τ(α,β,γ) ,(6)

where τ(α, β, γ) = (−1)α+β−γ . The resulting expression for S0 is

(7) S0[i1, i2, . . . , i24] =
∑

m1

∑

m2

· · ·
∑

m8









8
∏

n=1

∆mn
τn

[

ia2(n) ib2(n) mn

ic2(n) id2(n) iR(n)

]

θ(ia2(n), id2(n), mn)θ(ib2(n), ic2(n), mn)









S1,

where τn = τ(iα(n), iβ(n), mn) are the factors associated with the twists that are attached to the eight
recoupled edges. S1 is the ladder spin network shown in Figure 6(b). The spins m1 through m8 are associated
to the new edges, labelled A′ through H ′. The eight intertwiners that labelled the edges A through H in
Figure 5, denoted R in the recoupling move (5), appear as iR(n) in (7).

2.5. Step 4 — Collapsing the ladder. Here we apply the recoupling move to the eight “rungs” of the
ladder. Superficially, this leads to an additional eight auxiliary summations. However, upon removing the
bubbles (which are proportional to the identity intertwiner) it becomes clear that all eight auxiliary spins
must be equal for the resulting network to be non-zero (Schur’s Lemma). Thus, only a single additional
auxiliary summation is required. Hence

(8) S1[i1, i2, . . . , i16, m1, . . . , m8] =
∑

l









8
∏

n=1

∆l

[

ia3(n) mb3(n) l

ic3(n) md3(n) ir(n)

]

θ(ia3(n), md3(n), l)θ(ib3(n), mc3(n), l)









S2,

where S2 is the chain of bubbles; note here that the ir(n) are the intertwiners corresponding to the “rungs”
of the ladder in Figure 6(b).

To complete the evaluation we apply the “bubble collapse” move

θ(a, b, l)

∆l

ba =

l

l

l(9)
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Figure 6. Final steps in recoupling, leading to a matrix multiplication of tet networks.

to each of the eight bubbles in Figure 6(c), which results in a product of theta and delta factors:

(10) S2[i1, i2, . . . , i8, m1, . . . , m8] = ∆l

(

8
∏

n=1

θ(in, mn, l)

∆l

)

.

The ∆l factor in front of the product comes from the loop formed after transforming the eight bubbles.
Assembling the results of our previous steps yields the following:

(11) Av[j1, j2, . . . , j24, i1, i2, . . . , i24] =

(

8
∏

n=1

[

ia1(n) jb1(n) ie1(n)

jc1(n) id1(n) jf1(n)

]

)

∑

l

∑

m1

∑

m2

· · ·
∑

m8

∆l

(

8
∏

n=1

∆mn
τn

[

ia2(n) ib2(n) mn

ic2(n) id2(n) iR(n)

]

θ(ia2(n), id2(n), mn)θ(ib2(n), ic2(n), mn)

[

ia3(n) mb3(n) l

ic3(n) md3(n) ir(n)

]

θ(ia3(n), md3(n), l)θ(ib3(n), mc3(n), l)
θ(in, mn, l)

)

,

where the ∆l factors appearing in the denominator of (10) cancel with the ∆l factors in (8).

2.6. Computational Cost. Suppose we choose a spin cut-off of j, so all spin and intertwiner labels must
be at most j. We will estimate the time required to compute the vertex amplitude (11).

The factors in (11) each depend on only one mn variable, except for the third tet network, which depends
on two of the mn variables. In fact, one can show that this dependence is in a cyclical order, so that, for fixed
l, the vertex amplitude can be computed as the trace of a product of eight matrices. The range of the mn

variables is restricted by the triangle equalities to be O(j), so the matrices have size O(j)×O(j). The entries
of these matrices are products of tet networks and θ networks, which require O(j) time to compute. Thus
forming the matrices and multiplying them together each require O(j3) time. Considering the sum over l,
which is also constrained to be O(j), we conclude that the overall cost to computing the vertex amplitude
is O(j4).
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For comparison with the D = 3 case, we recall that the amplitude introduced by [14, 15, 16] and used
in [24, 25, 26] was O(j). This O(j) algorithm as well as an alternative O(j2) vertex amplitude were used in
the D = 3 dual LGT simulations [20].

2.7. Edge amplitude. To complete the model, we describe how the normalization factor appearing in the
denominator on the RHS of (2) can be given an explicit expression. Having chosen the three-fold splitting
described above for our intertwiners, we draw the edge amplitude evaluation as shown in Figure 7(a). As

3i

i1

j6 j5j2 j3j1j4

i2
3i

j4 j1
j2 j3 j6 j5

3i i1i2

i2 i1

i

i3

1

i2

(b)(a)

Figure 7. Normalization of edges.

above, one can compute the sign relating the original network with directed edges to an undirected Kauffman-
Lins spin network, and once again one finds that globally these signs cancel. The undirected spin network is
shown in Figure 7(b) and can be transformed into a theta network by collapsing the three bubbles according
to the identity (9), as follows:

Ae[j1, j2, j3, j4, j5, j6, i1, i2, i3] =
θ(j4, j1, i2)θ(j2, j3, i3)θ(j6, j5, i1)

∆i1∆i2∆i3

θ(i1, i2, i3).(12)

Here j1, . . . , j6 are the labels for the six plaquettes incident to an edge and i1, i2, i3 are the three intertwiner
labels. Figure 7 also makes it clear that different intertwiners are orthogonal.

2.8. Validation of the Vertex and Edge Amplitudes. The best comprehensive check for the validity
of the amplitude derived above is a full simulation of the dual theory at increasingly large cut-offs. While
this work is currently in progress, a more limited form of validation has been done. In the case where dual
configurations are ensembles of closed, self-avoiding surfaces on the lattice, there is an explicit closed-form
expression for the resulting amplitude related to the coloring of self-avoiding surfaces by irreps and their Euler
characteristic; this formula is derived in [21]. To verify that the amplitude was correct for these configurations,
code was implemented to generate a range of such self-avoiding topologies (corresponding topologically to
2-tori and 2-spheres) and colorings. Using an implementation of the vertex and edge amplitudes given
above, the amplitudes of self-avoiding dual configurations were found to be in agreement with the closed
form formula.

3. Conclusions

We have presented an explicit formulation of pure Yang-Mills theory on a D = 4 hypercubic lattice with
G = SU(2). Computationally, the critical part of the amplitude is the vertex amplitude, a function of 48
spins coming from the 24 plaquette labels and 24 intertwiner labels associated to a vertex. In a variety of
special cases where a closed form formula was available, the amplitude was successfully verified. The first
results of dual simulations using this amplitude will be reported on in forthcoming work by the first author.

While the vertex amplitude scales with j4 rather than j (as in the D = 3 case), the achievable performance
is sufficient to enable the first practical four-dimensional computations within the dual model. This is an
important step in evaluating the feasibility of dual algorithms for non-abelian LGT as a possible alternative to
conventional methods. We would also like to remark that the discovery of the original D = 3 amplitude [14,
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15, 16] prompted a number of intriguing analytic results. These include work by Diakonov and Petrov [27]
revealing a gravitational interpretation to the dual degrees of freedom, as well as recent work by Conrady [28].
With the present result, the way is now clear to establish analogous analytic results in D = 4. In particular,
it will be interesting to see which results of the above work are specific to D = 3 and which ideas can be
extended D = 4.
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