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Introduction

Recall the following fundamental result:

Theorem (J.H.C. Whitehead, 1949). Let f : X → Y be a
pointed map between pointed, connected CW complexes. TFAE:

f is a pointed homotopy equivalence.
For n > 0, the induced map [Sn, X]• → [Sn, Y ]• is a bijection.

The • means that we are considering pointed homotopy classes of
pointed maps, so [Sn, X]• = πn(X).

Question. Does there exist a set G of spaces such that for any map
f : X → Y between connected CW complexes, TFAE:

f is a homotopy equivalence.
For each S ∈ G, the induced map [S,X]→ [S, Y ] is a bijection.

Here we are considering unpointed homotopy classes.
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History

Question. Does there exist a set G of spaces such that for any map
f : X → Y between connected CW complexes, TFAE:

f is a homotopy equivalence.
For each S ∈ G, the induced map [S,X]→ [S, Y ] is a bijection.

In 1981, Heller claimed that the answer to the above question is “No.”
However, his proof relied on an “obvious” fact, which turns out to
be false. To explain this, we need some definitions.

Definition. Let C be a category and let G ⊆ C be a set of objects.
The set G jointly reflects isomorphisms if a morphism f : X → Y
in C is an isomorphism whenever C(S, f) : C(S,X)→ C(S, Y ) is a
bijection for every S ∈ C.

With this terminology, the question is whether Ho(Top) contains a
set which jointly reflects isomorphisms. 3 / 11



Definition. Let C be a category and let G ⊆ C be a set of objects.
The set G jointly reflects isomorphisms if a morphism f : X → Y
in C is an isomorphism whenever C(S, f) : C(S,X)→ C(S, Y ) is a
bijection for every S ∈ C.

A weak colimit of a diagram D : I → C is a cocone W through
which every cocone Z factors, not necessarily uniquely.

The set G is bounded if for each sufficiently large regular cardinal
κ, every diagram D : κ→ C has a weak colimit W such that

colim
α<κ

C(S,D(α)) −→ C(S,W )

is a bijection for every S ∈ G.

D(0) // D(1) // D(2) // · · · //W

S

∀

OO

∃ (almost unique)

hh
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History II

Theorem (Heller, 1981). Assume that C has coproducts and
weak pushouts, and contains a bounded set G of objects which
jointly reflects isomorphisms. Let F : Cop → Set. TFAE:
(i) F is representable, i.e., F (−) ∼= C(−,K) for some K ∈ C.
(ii) F sends coproducts and weak pushouts in C to products and

weak pullbacks in Set.

Example (Heller). There is a functor Ho(Top)op → Set which
satisfies (ii) but is not representable.

Claim (Heller). Every set G of CW complexes is bounded in
Ho(Top).

Conclusion (Heller). There does not exist a set G of objects
which jointly reflects isomorphisms in Ho(Top).
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Our results (C.-Arlin/Carlson)

Theorem 1. The set G = {Sn} of spheres in Ho(Top) is not
bounded.

This reopens the question given at the start of this talk.

Theorem 2. There does not exist a set G of spaces that jointly
reflects isomorphism in Ho(Top).

So Heller was right!

In contrast, in the 2-category of spaces, maps, and homotopy
classes of homotopies, the spheres do jointly reflect isomorphisms.
(Arlin/Raptis)
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Methods
Theorem 1 is much harder to prove than Theorem 2. We show:

Theorem 1. For every uncountable regular cardinal κ, there is a
diagram D : κ→ Ho(Top) which has no weak colimit W satisfying

colim
α<κ

C(Sn, D(α)) ∼= C(Sn,W ) ∀n > 0. (1)

We first show that it is sufficient to find a counterexample in the
homotopy category of groupoids, where maps are functors up to
natural isomorphism.

Given κ, the diagram D we consider sends α to the free group on α
generators, with morphisms the natural inclusions.

We then use Serre’s theory of graphs of groups and Higgins’ work on
their fundamental groupoids to construct a sufficiently pathological
cocone, which we use to show that D has no weak colimit satisfying (1).
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Methods II

Theorem 2. There does not exist a set G of spaces that jointly
reflects isomorphism in Ho(Top).

The proof of Theorem 2 requires no special tools. Here’s a sketch.

Let G be a set of spaces and let α be a regular cardinal larger than
|π1(S)| for each S ∈ G.

Let Σc
α denote the group of bijections σ : α→ α which move fewer

than α elements.

Define the shift homomorphism s : Σc
α → Σc

α by

s(σ)(γ) =
{
σ(γ′) + 1, γ = γ′ + 1
γ, γ a limit ordinal.

Our example will be Bs : BΣc
α → BΣc

α.
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Methods III

We’re considering Bs : BΣc
α → BΣc

α where

s(σ)(γ) =
{
σ(γ′) + 1, γ = γ′ + 1
γ, γ a limit ordinal.

Recall that Ho(Top)(BG,BH) ∼= Hom(G,H)/conjugation by H.
Therefore, Bs is a homotopy equivalence iff s is an isomorphism.
But s is not surjective, since s(σ) always preserves limit ordinals.
Therefore, Bs : BΣc

α → BΣc
α is not a homotopy equivalence.

Claim: (Bs)∗ : Ho(Top)(S,BΣc
α)→ Ho(Top)(S,BΣc

α) is a bijection
for every S ∈ G.

It suffices to prove this for S = BG, where G is any group of
cardinality less than α. We in fact show:

Claim 2: (Bs)∗ : Ho(Top)(BG,BΣc
α)→ Ho(Top)(BG,BΣc

α) is
the identity map for every G of cardinality less than α.
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Methods IV (if time)

Claim 2: (Bs)∗ : Ho(Top)(BG,BΣc
α)→ Ho(Top)(BG,BΣc

α) is
the identity map for every G of cardinality less than α.

Any map BG→ BΣc
α is induced by a homomorphism φ : G→ Σc

α.
Let β < α be a cardinal such that φ(g) ∈ Σβ for all g ∈ G.
Then s ◦ φ is conjugate to φ via τ ∈ Σc

α defined by

τ(γ) =


γ − 1, γ < β a successor ordinal
β + γ, γ < β a limit ordinal
γ + 1, β ≤ γ < β + β

γ, otherwise.
Some straightforward calculations show:
τ is a bijection.
τ fixes γ ≥ β + β, so τ ∈ Σc

α.
τ−1στ = s(σ) for σ ∈ Σβ.

In particular, s ◦ φ is conjugate to φ, and Claim 2 follows.
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