
Univalent fibrations in type theory
and topology

Dan Christensen
University of Western Ontario

Wayne State University, April 11, 2016

Outline:

Background on type theory

Equivalence and univalence

A characterization of univalent fibrations

1 / 24

A puzzle for the topologists

Let p : E → B be a Kan fibration with B a Kan complex. For each
b0, b1 in B there is a map

ω : Paths(b0, b1)→ Equivalences(Eb0 , Eb1).

If ω is a weak equivalence for all b0, b1, we say that p is univalent.

Puzzle: Which p are univalent?

We’ll come back to this at the end of the talk, after a long detour.

2 / 24

History of Type Theory

Initial ideas due to Bertrand Russell in early 1900’s, to create a
foundation for mathematics that avoids Russell’s paradox.

Studied by many logicians and later computer scientists,
particularly Church, whose λ-calculus (1930’s and 40’s)
is a type theory.

In 1972, Per Martin-Löf extended type theory to include dependent
types. It is this form of type theory that we will focus on.
One of the key features is that it unifies set theory and logic!

In 2006, Awodey, Warren, and Voevodsky discovered that type
theory has homotopical models, extending 1998 work of Hofmann
and Streicher.

2012–2013: A special year at the IAS, which led to The HoTT
book.

May 12-16, 2016: Come to our workshop at the Fields Institute!
3 / 24

Background on Type Theory

Type theory is a logical system in which the basic objects are
called types.

Initially, types were thought of as sets, but we will see later that it
is fruitful to think of them as being like spaces.

As in first order logic, type theory is a syntactic theory in which
certain expressions are well-formed, and there are syntactic rules
that tell you how to produce new expressions (i.e., theorems) from
existing expressions.

First order logic can be used to study many theories: the theory of
groups, Peano arithmetic, set theory (e.g., ZFC), etc.

In contrast, type theory is intrinsically a theory about sets/spaces.
It is not a general framework for studying axiomatic systems, but
instead unifies set theory and logic so that they live at the same
level.

4 / 24

Background on Type Theory II

People study type theory for many reasons. I’ll highlight two:

Its intrinsic homotopical content. (This talk.)

Its suitability for computer formalization. (Another talk!)

We’ll dive right in without being formal about it.

We write x : X to indicate that x is an element of type X, which is
analogous to the set-theoretic statement x ∈ X.

Each element has a unique type, so we can’t directly talk about
intersections, unions, etc. Instead, type theory comes with type
constructors that correspond to common constructions in
mathematics.

We assume given a universe type Type, and therefore can write
X : Type to indicate that X is a type.

5 / 24

Type Constructors: Function types

For any two types A and B, there is a function type denoted
A→ B, which should be thought of as an internal hom BA.

If f(a) is an expression of type B whenever a is of type A, then
λa.f(a) denotes the function A→ B sending a to f(a).

Conversely, if f : A→ B and a : A, then f(a) : B.

Examples:

The identity function idA is defined to be λa.a.

The constant function sending everything in A to b : B is λa.b.

Given functions f : A→ B and g : B → C, their composite
gf : A→ C is λa.g(f(a)).

And λf.λg.λa.g(f(a)) has type

(A→ B)→ ((B → C)→ (A→ C)).

6 / 24

Type Constructors: Coproduct

Most constructions in type theory are defined inductively.

For example, given types A and B, there is another type A+B
which is generated by elements of the form inl a and inr b.

“Generated” means that it satisfies a weak universal property:

A

inl
��

∀

''
A+B

∃ // C

B

inr

OO

∀

77

7 / 24

Type Constructors: ∅, 1, ×, N
Here are other types defined by such induction principles:

The empty type ∅ is a weakly initial object (“free on no
generators”): for any C, there is a map ∅→ C.

The one point type 1 is “free on one generator ∗”: given c : C,
there is a map f : 1→ C with f(∗) = c.

The product A×B of two types is generated by all pairs (a, b):
given g : A→ (B → C), we get f : A×B → C with
f(a, b) = g(a)(b).

The type of natural numbers N is generated by 0 : N and
succ : N→ N: given c0 : C and cs : N→ C → C, we get
f : N→ C with f(0) = c0 and f(succ n) = cs(n, f(n)).

Note the preference for constructions defined by mapping out.

When the induction principles are generalized to dependent types,
uniqueness will follow.

8 / 24

Dependent Types

The above structure is enough to construct types that depend on
elements of other types.

These dependent types are one of the key ideas in Martin-Löf type
theory, and will play a central role in this talk.

Examples:

λa.B : A −→ Type (a constant type family)

λn.An : N −→ Type (An+1 := A×An, inductively)

λ(A,B). A+B : Type× Type −→ Type

parity : N −→ Type

with parity(n) = ∅ for n even and 1 for n odd.

9 / 24

Dependent Sums and Products

Dependent sums are like the disjoint union:

Given a type family B : A→ Type, the dependent sum
∑
a:A

B(a) is
freely generated by pairs (a, b) with b : B(a).

The dependent sum has a projection map

pr1 :
∑
a:A

B(a) −→ A

sending (a, b) to a, and we call such a map a fibration.

There is also a dependent product
∏
x:A

B(x). Its elements are

functions f sending each x : A to an f(x) : B(x).

Note: both the value of f(x) and the type of f(x) depend on x.∏
a:A

B(a) can also be thought of as the space of sections of pr1.

10 / 24

Propositions as Types: Curry-Howard

A type can be thought of as a proposition, which is true when
inhabited:

Types ←→ Propositions

∅ ←→ false

1 ←→ true

P ×Q ←→ P and Q

P +Q ←→ P or Q

P → Q ←→ P implies Q∏
x:A

P (x) ←→ ∀xP (x)

∑
x:A

P (x) ←→ ∃xP (x)

But what about the proposition a = b?

11 / 24

Identity Types

Given a type A, the identity type of A is a type family
A×A→ Type whose values are written a = b for a, b : A.

This type family is generated by “reflexivity” elements of the form
refla : a = a for each a : A.

An element of the type a = b was historically thought of as the
assertion that a equals b, but in the homotopical interpretation
should be thought of as a path from a to b in A, with refla being
the constant path at a.

The associated map
∑
a,b:A

(a = b) −→ A×A was historically thought

of as the diagonal map A→ A×A, but for our purposes it is better
regarded as the path fibration AI → A×A, which is obtained by
replacing the diagonal map by a fibration.

12 / 24

Regular Mathematics

With the foundation presented so far, all of the usual constructions
of mathematics can be done, with types thought of as sets.

For example, one can construct the real numbers and do analysis;
one can prove theorems in algebra; and one can define topological
spaces and simplicial sets, and prove the standard results about
them.

Major results include the Feit-Thompson odd-order theorem
(Gonthier), the four-colour theorem (Gonthier), Kepler’s sphere
packing conjecture (Hales), a C compiler that has been proven
correct and is used in industry (Leroy et al), and lots more.

13 / 24

Models

A model of type theory is a category equipped with type
constructors that satisfy all of the properties we have assumed.
(Making this precise is technical.)

∅ ←→ initial object

1 ←→ terminal object

P ×Q ←→ product

P +Q ←→ coproduct

P → Q ←→ cartesian closed∏
x:A

P (x) ←→ locally cartesian closed

a = b ←→ a weak factorization system

with suitable compatibility.

Motivating example: Set with epi-mono weak factorization system,
so a = b is usual equality.

14 / 24

Models, II

For a, b : A, we have a type a = b. Therefore, it has an associated
identity type p = q for p, q : a = b. For over 20 years, it was an
open question whether p = q always holds.

In 1998, Hofmann and Streicher showed that the category of
groupoids is a model of type theory, with a = b given by Hom(a, b).
It follows that the answer is no!

Then in 2006, Voevodsky showed that simplicial sets form a model
of type theory, which also shows that the answer is no.

At about the same time, Awodey and Warren showed that weak
factorization systems give identity types.

We now know that many Quillen model categories are models of
type theory. Homotopical thinking clarifies aspects of type theory.

Any proof in type theory gives a theorem in all models!

15 / 24

Equivalences

The models above suggest thinking of a type as a homotopical
object. Let’s see where this leads.

We say that f : A→ B is an equivalence if it has left and right
inverses. That is,

IsEquivf :≡

(∑
g:B→A

(gf = idA)

)
×

(∑
h:B→A

(fh = idB)

)
.

The type of equivalences from A to B is

A ' B :≡
∑

f :A→B
IsEquivf.

One can also define loop spaces, homotopy groups, etc.

16 / 24

Univalence Axiom

For types A and B, we define a function ω : (A = B)→ (A ' B) by
sending reflA to idA.

The Univalence Axiom says that ω is an equivalence for all types A
and B.

If ω is an equivalence, then there is an inverse map

(A ' B) −→ (A = B)

which implies that equivalent types are equal.

This is an assertion about the universe Type, and it does not hold
in the standard set-theoretic model.

But it does hold for the model in simplicial sets. Type theory with
this axiom is called Homotopy Type Theory.

With this axiom, one can prove π1(S
1) = Z, π4(S

2) = Z/2,
Blakers-Massey, and many other results.

17 / 24

Univalent type families

Univalence is a puzzling notion, so we’ll study it by generalizing it.

We say that a type family B : A→ Type is univalent if the
composite map

(a = a′)
ap B // (B(a) = B(a′))

ω // (B(a) ' B(a′))

is an equivalence, where ap B sends refla to reflB(a).

The Univalence Axiom is the special case where the type family is
idType : Type→ Type.

Our goal is to characterize the univalent type families, as a way to
better understand the Univalence Axiom.

18 / 24

The Case of Simplicial Sets

In the simplicial model, the notion of equivalence matches the
standard notion, and a type family corresponds to a Kan fibration,
obtained using the dependent sum construction.

Associated to a Kan fibration E → B is a fibration
Eq(E)→ B ×B whose fibre over (b, b′) is the simplicial set of
equivalences from the fibre Eb to the fibre Eb′ .

The fibration E → B is univalent iff a certain natural map from the
path space BI to Eq(E) is an equivalence. (Recall the first slide.)

Examples:

The identity map X → X is univalent iff X is empty or
contractible.

The double-cover S∞ → RP∞ is univalent.

19 / 24

BAut(F)

We next construct a univalent type family associated to any type F .
Define

BAut(F) :≡
∑
Z:Type

|F ' Z|,

where |P | denotes the propositional truncation of the type P .
This is a type which is either empty or contractible, and has the
same truth value as P .

Define
Aut(F) :≡ (F ' F),

the monoid of self-equivalences of F .

Lemma (Easy). ΩBAut(F) ' Aut(F), where ΩX :≡ (x0 = x0).

I don’t know how to define BG in general, but the above implies
that BAut gives the correct result in a model.

20 / 24

The universal fibration with fibre F

Since BAut(F) :≡
∑
Z:Type

|F ' Z|, we have a canonical map

α :≡ pr1 : BAut(F) −→ Type.

Proposition. The type family α is univalent for any type F .

A technical argument was sketched for simplicial sets in a talk by
Moerdijk. It is proved for ∞-topoi by Gepner and J. Kock. In fact,
the proposition is easy to prove in type theory (see the HoTT
library), and implies the result in simplicial sets and other models.

Consider the associated fibration
∑

(Z,e):BAut(F)

Z → BAut(F).

Taking F = 1 gives the identity map on a contractible space.
Taking F = 1 + 1 gives S∞ → RP∞. In general, get
EAut(F)×Aut(F) F → BAut(F).

21 / 24

A Characterization of Univalent Fibrations

Theorem (C). If B : A→ Type is a univalent type family and A is
connected, then there is a type F and an equivalence
f : A ' BAut(F) such that

A
B //

f ∼
��

Type

BAut(F)

α

::

commutes up to homotopy.

More generally, if A is not connected, then it is a coproduct of a
set-indexed family of BAut(F)’s, with pairwise non-equivalent F ’s,
with a similar commuting diagram.

The case of the empty coproduct gives ∅→ ∅, our other example.

22 / 24

Consequences

Univalent fibrations are exactly the classifying bundles for
fibrations with fibre F (or an appropriate coproduct of such).
This is a notion from the 1950’s that is extremely well-studied
in topology (Stasheff, May and others).

If the Univalence Axiom holds, then idType : Type→ Type is a

univalent type family, so Type is equivalent to
∑

BAut(F),

where the sum is over equivalence classes of F : Type.
We can also describe the total space of the universal fibration
over Type.

A given type A is rarely the base of a univalent fibration, and
when it is, it is usually the base of only one univalent fibration
up to equivalence. However, coincidences can occur. E.g.
taking F to be 1 gives 1→ 1, but taking F to be ∅ gives
∅→ 1, so both are univalent.

I know of no other coincidences!

23 / 24

About the Proof

It’s almost tautologous that a univalent family B : A→ Type

factors through BAut(F) when B is connected. But there is some
work in showing that the map A→ BAut(F) is an equivalence.

The proof has been formalized in the proof assistant Coq.

I also have a more complicated proof for simplicial sets, that
doesn’t use a universe or univalence. This could possibly give
another way to prove that simplicial sets has a univalent universe,
but there are non-trivial issues of strictness.

To learn more about homotopy type theory: These slides
and a longer introduction to type theory are on my web site.

Mike Shulman’s slides from two series of lectures are great.

Homotopy Type Theory: Univalent Foundations of Mathematics is
the standard source.

Thanks!
24 / 24

