The Billion Dollar Eigenvector

The mathematics behind Google’s pagerank algorithm

Dan Christensen
Google came to prominence, and became a multi-billion dollar corporation, because they were able to provide the most relevant search results.

How do they do it? We’ll describe a simplified version of their PageRank algorithm.

To make things concrete let’s consider a simplified web with only four pages that are linked as follows:
PageRank

The idea behind PageRank is that we should give each page a score which is based on the number of links to that page.

So, in our example network

page 1 should rank highly because it has a lot of incoming links. So the scores might be:

\[x_1 = 3, \quad x_2 = 2, \quad x_3 = 1, \quad x_4 = 2 \]
Some votes matter more

There are two extra tricks that make this work well.

First, links from a page that has a high PageRank score should count for more.
Some votes matter more

There are two extra tricks that make this work well.

First, links from a page that has a high PageRank score should count for more.

This would suggest formulas such as

\[
\begin{align*}
 x_1 &= x_2 + x_3 + x_4 \\
 x_2 &= x_1 + x_4 \\
 x_3 &= x_4 \\
 x_4 &= x_2 + x_3
\end{align*}
\]

But, there are various problems with this. For example, there is no non-zero solution to this system!
Sharing the vote

The second trick is that when a page links to several other pages, the score it gives to them should be shared, giving:

$$
x_1 = \frac{1}{2} x_2 + \frac{1}{2} x_3 + \frac{1}{3} x_4
$$

$$
x_2 = x_1 + \frac{1}{3} x_4
$$

$$
x_3 = \frac{1}{3} x_4
$$

$$
x_4 = \frac{1}{2} x_2 + \frac{1}{2} x_3
$$

This approach works well! For our web, it gives:

$$
x_1 = 4, \quad x_2 = 5, \quad x_3 = 1, \quad x_4 = 3,
$$

with page 2 ranked the highest.
Matrix form

The equations we got

\[x_1 = \frac{1}{2} x_2 + \frac{1}{2} x_3 + \frac{1}{3} x_4 \]
\[x_2 = x_1 + \frac{1}{3} x_4 \]
\[x_3 = \frac{1}{3} x_4 \]
\[x_4 = \frac{1}{2} x_2 + \frac{1}{2} x_3 \]

can be written in matrix form:

\[x = Ax \]

where

\[x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} \quad \text{and} \quad A = \begin{pmatrix} 0 & \frac{1}{2} & \frac{1}{2} & \frac{1}{3} \\ 1 & 0 & 0 & \frac{1}{3} \\ 0 & 0 & 0 & \frac{1}{3} \\ 0 & \frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix} \]
Eigenvectors

We know that solving the system

\[x = Ax \]

is called **finding an eigenvector of A with eigenvalue 1**. Since A is a stochastic matrix, such an x always exists.
Eigenvectors

We know that solving the system

$$\mathbf{x} = A\mathbf{x}$$

is called finding an eigenvector of A with eigenvalue 1. Since A is a stochastic matrix, such an \mathbf{x} always exists.

What’s more surprising is that there is an efficient way to compute it, even when A is huge. (It might be 10 billion by 10 billion!)

For more details, see the excellent article by Kurt Bryan and Tanya Leise at

http://www.rose-hulman.edu/~bryan/google.html

Or just put “google eigenvector” into Google and you’ll find it!
Eigenvectors

We know that solving the system

\[x = Ax \]

is called finding an eigenvector of \(A \) with eigenvalue 1. Since \(A \) is a stochastic matrix, such an \(x \) always exists.

What’s more surprising is that there is an efficient way to compute it, even when \(A \) is huge. (It might be 10 billion by 10 billion!)

For more details, see the excellent article by Kurt Bryan and Tanya Leise at

http://www.rose-hulman.edu/~bryan/google.html

Or just put “google eigenvector” into Google and you’ll find it!

PS: When you are rich, don’t forget who taught you Linear Algebra!